Welcome To Tree Bio Lab At HZAU

The Server works

Contact:

Interest: Tree Genetics, Genomics, Molecular Biology and Bioinformatics for Poplar and Walnut.

Bioinformatic Tools

LocalBlastTools    BaiduXueshu    Bing    MegaTree    HMMER    SoftBerry    Primer3     Translate_tool    Smart    Protein-mw
ReverseCom    BoxShade    Multiple Sequence Alignment (MSA)    PLACE    FindSSR    Eggnog    Download

DataBase

NCBI    Popgenie    Phytozome    TAIR    PlantGSEA    uniprot    Plant MITE Database    agriGO    planttfdb   

Major Publications

1.Wang N , Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J*. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytologist. 2008(180): 751-765. https://doi.org/10.1111/j.1469-8137.2008.02619.x   
2. Wang N#, Shi L#, Tian F, Ning H, Wu X, Long Y, Meng J, Meng J*. Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC Plant Biology. 2010(10):137 https://doi.org/10.1186/1471-2229-10-137   
3. Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Muller AE*, Jung C. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. Journal of Experimental Botany. 2011(15):5641-58 https://doi.org/10.1093/jxb/err249   
4. Wang N, Fang LC, Xin HP, Wang LJ, Li SH*. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biology. 2012(12):148 https://doi.org/10.1186/s12870-015-0428-2   
5. Wang N*#, Zheng Y#, Fang LC, Xin HP, Li SH*. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Reports. 2013(32):1:61-75 https://doi.org/10.1007/s00299-012-1340-y   
6. Wang N*, Xiang Y, Fang LC, Xin Haiping, Li SH*. Patterns of gene duplication and their contribution to expansion of large gene families in grapevine. Plant Molecular Biology Reporter. 2013(31):4:852-856 http://link.springer.com/10.1007/s11105-013-0556-5   
7. Wang N#, Li F#, Chen BY, Xu K, Yan GX, Qiao JW, Li J, Gao GZ, Bancroft I, King GJ, Meng JL, Wu XM*. Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theoretical and Applied Genetics. 2014(127):8 https://doi.org/10.1007/s00122-014-2343-6   
8. Fang LC, Hou YL, Wang LJ, Xin HP, Wang N*, Li SH*. Myb14, a direct activator of STS, is associated of resveratrol content variation in berry skin in two grape cultivars. Plant Cell Reports. 2014, 33(10):1629-40 https://doi.org/10.1007/s00299-014-1642-3   
9. Chen J#, Wang N#, Fang LC, Liang ZC, Li SH*, Wu BH*. Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biolology 2015(15):28 https://doi.org/10.1186/s12870-015-0428-2   
10. Wang N and Shi L. Screening of mutations by TILLING in plants. Methods Mol Biol.2015,(1245):193-203. https://doi.org/10.1007/978-1-4939-1966-6_15   
11. Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci.2016,(24):7:338 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805649/   
12. Wang N*, Cao P, Xia WX, Fang LC, Yu HY. Identification and characterization of long non-coding RNAs in response to early infection by Melampsora larici-populina using genome-wide high-throughput RNA sequencing. Tree Genetics & Genomes. 2017(13):34 http://link.springer.com/10.1007/s11295-017-1116-1   
13. Xia WX, Fang LC, Yu HY, Cao P, Luo J, Wang N*. Identification of TIFY family genes and analysis of their expression profiles in response to phytohormone treatments and melampsora larici-populina infection in poplar. Front Plant Sci. 2017(8):493 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380741/   
14. Xia WX#, Xiao ZA#, Cao P, Zhang Y, Du KB*, Wang N*. Construction of a high-density genetic map and its application for leaf shape QTL mapping in poplar.Planta. 2018(248):5:1173-1185. https://rd.springer.com/article/10.1007/s00425-018-2958-y   
15. Luo J#, Xia WX#,Cao P, Xiao ZA, Zhang Y, Liu MF, Zhan C, Wang N*.Integrated transcriptome analysis reveals plant hormones jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar. Biomolecules. 2019(9):1:12 https://doi.org/10.3390/biom9010012   
16. Zhang Y#, Xiao ZA#,Zhan C, Liu MF, Xia WX, Wang N*.Comprehensive analysis of dynamic gene expression and investigation of the roles of hydrogen peroxide during adventitious rooting in poplar. BMC Plant Biology. 2019(19):99 https://doi.org/10.1186/s12870-019-1700-7   
17. Nvsvrot T#, Xia W#, Xiao Z, Zhan C, Liu M, Yang X, Wang N*.Combining QTL mapping with genome resequencing identifies an indel in an R gene that is associated with variation in leaf rust disease resistance in poplar. Phytopathology. 2020:110:900-906 https://doi.org/10.1094/PHYTO-10-19-0402-R   
18. Zhang Y, Yang X, Cao P, Xiao Z, Zhan C, Liu M, Nvsvrot T, Wang N*.The bZIP53-IAA4 module inhibits adventitious root development in Populus. Journal of Experimental Botany. 2020(12):3485-3498 https://doi.org/10.1093/jxb/eraa096   
19. Yang Y#, Cuenca J#, Wang N#, Liang Z#, Sun H, Gutierrez B, Xi X, Arro J, Wang Y, Fan P, Londo J, Cousins P, Li S, Fei Z, Zhong G-Y*. A key 'foxy' aroma gene is regulated by homology-induced promoter indels in the iconic juice grape 'Concord'. Horticulture Research. 2020:7:67 https://doi.org/10.1038/s41438-020-0304-6   
20. Xiao Z, Zhang Y, Liu M, Zhan C, Yang X, Nvsvrot T, Wang N*.Coexpression analysis of a large-scale transcriptome identified a calmodulin-like protein regulating the development of adventitious roots in poplar. Tree Physiology. 2020(40):10:1405-1419 https://doi.org/10.1093/treephys/tpaa078   
21. Wang H#, Asker K#, Zhan C#, Wang N*.Transcriptomic and metabolic analysis of fruit development and identification of genes involved in raffinose and hydrolysable tannin biosynthesis in walnuts. Journal of Agricultural and Food Chemistry. 2021,69,28:8050-8062 https://doi.org/10.1021/acs.jafc.1c02434   
22. Luo J, Nvsvrot T., Wang N*.Comparative transcriptomic analysis uncovers conserved pathways involved in adventitious root formation in poplar.Physiol Mol Biol Plants. 2021:27:1903-1918 https://doi.org/10.1007/s12298-021-01054-7   
23. Zhang Y, Yang X, Nvsvrot T, Huang L, Cai G, Ding Y, Ren W, Wang N*.The transcription factor WRKY75 regulates the development of adventitious root, lateral bud and callus by modulating hydrogen peroxide content in poplar.Journal of Experimental Botany. 2022,73:1483-1498 https://doi.org/10.1093/jxb/erab501   
24. Yang X, Zhang K, Nvsvrot T, Zhang Y, Cai G, Huang L,Ren W, Ding Y, Hammond J, Shi L, Wang N*. Phosphate (Pi) stress-responsive transcription factors PdeWRKY6 and PdeWRKY65 regulate the expression of PdePHT1;9 to modulate tissue Pi concentration in poplar. The Plant Journal. 2022 (111):1753-1767. https://doi.org/10.1111/tpj.15922   
25. Luo, J., Ren, W., Cai, G. Huang L, Shen X, Li N, Nie C, Li Y*, Wang N*. The chromosome-scale genome sequence of Triadica sebifera provides insight into fatty acids and anthocyanin biosynthesis. Communications Biology. 2022: 5:786.https://doi.org/10.1038/s42003-022-03751-9   
26. Liu M, Huang L, Zhang Y, Yan Z, Wang N*. Overexpression of PdeGATA3 results in a dwarf phenotype in poplar by promoting the expression of PdeSTM and altering the content of gibberellins. Tree Physiology. 2022(42):2614-2626. https://doi.org/10.1093/treephys/tpac086   
27. Nvsvrot T, Yang X, Zhang Y, Huang L, Cai G, Ding Y, Ren W, Wang N*. The PdeWRKY65-UGT75L28 gene module negatively regulates lignin biosynthesis in poplar petioles. Industrial Crops and Products. 2023(191): 115937. https://doi.org/10.1016/j.indcrop.2022.115937   
28. Nie C, Zhang Y, Zhang X, Xia W, Sun H, Zhang S, Li N, Ding Z, Lv Y*,Wang N*. Genome assembly, resequencing and genome-wide association analyses provide novel insights into the origin, evolution and flower colour variations of flowering cherry. The Plant Journal. 2023,114:519-533.https://doi.org/10.1111/tpj.16151   
29. Pan L#*, Liu MH#, Kang Y#, Mei X, Hu GG, Bao C, Zheng Y, Zhao HX, Chen CY, Wang N*. Comprehensive genomic analyses of Vigna unguiculata provide insights into population differentiation and the genetic basis of key agricultural traits.Plant Biotechnology Journal.2023,21:1426-1439. https://doi.org/10.1111/pbi.14047   
30. Cai G, Zhang Y, Huang LY, Wang N*. Uncovering the role of PdePrx12 peroxidase in enhancing disease resistance in poplar trees. Journal of fungi. 2023, 9(4), 410. https://doi.org/10.3390/jof9040410   
31. Zhang, Y.#, Cai, G.#, Zhang, K., Sun, H., Huang, L., Ren, W., Ding, Y., Wang N*. PdeERF114 recruits PdeWRKY75 to regulate callus formation in poplar by modulating the accumulation of H2O2 and the relaxation of cell walls. New Phytologist.2024, 241:732-746. https://doi.org/10.1111/nph.19349   
32. Luo, J., Wang, Y., Li, Z., Wang, Z., Cao, X., Wang N*. Haplotype-resolved genome assembly of poplar line NL895 provides a valuable tree genomic resource. Forestry Research.2024, 4:e015, https://doi.org/10.48130/forres-0024-0013